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In a spatially periodic temperature profile, directed transport of an overdamped Brownian particle can be
induced along a periodic potential. With a load force applied to the particle, this setup can perform as a heat
engine. For a given load, the optimal potential maximizes the current and thus the power output of the heat
engine. We calculate the optimal potential for different temperature profiles and show that in the limit of a
periodic piecewise constant temperature profile alternating between two temperatures, the optimal potential
leads to a divergent current. This divergence, being an effect of both the overdamped limit and the infinite
temperature gradient at the interface, would be cut off in any real experiment.
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I. INTRODUCTION

Noise-induced transport occurs in a broad variety of sys-
tems both in physics and biology �1�. In a microscopic sys-
tem embedded in a thermal environment, directed transport
generally requires two ingredients: �i� External sources driv-
ing the system out of equilibrium and �ii� broken spatial
symmetry �1�. The main idea is to impede the thermal mo-
tion in one direction in order to obtain a net current in the
other direction �2�. This mechanism is called the “ratchet
effect.” Applications range from particle sorting �3,4� to
modeling molecular motors �2,5–7�. Most studies on ratchet
motors focus on a given potential landscape and a given
driving scheme. For practical purposes, however, optimiza-
tion of the driving mechanism with respect to a maximal
current is an important issue.

For discrete analogs of ratchet motors, where the potential
landscape is characterized by only a few parameters, such an
optimization has been performed in models for microscopic
heat engines �8� and molecular motors �9�. Paradoxical Par-
rondo games �10� which can be interpreted as discrete ana-
logues of Brownian ratchets �11�, have also been optimized
recently �12�.

For continuous motors, where optimization requires varia-
tional calculus, there exist only a few results. The optimiza-
tion of driving schemes has been studied for time-
dependently driven ratchet motors �13,14� and for a
Brownian heat engine cycling between two heat reservoirs
�15�. Potential landscapes have been optimized for the trans-
port across membrane channels �16�. Maximizing the current
of flashing ratchets by using a feedback control strategy has
been proposed recently �17,18�.

In this paper, we focus on a continuous thermal ratchet
where transport along a spatially varying time-independent
potential is driven by a periodic spatial temperature profile
�19–22�. The recent generation of temperature gradients on
small length scales �23–25� may render such molecular heat
engines experimentally realizable. Cargoes driven by thermal
gradients on a subnanometer scale have already been ob-
served �26�.

Thermodynamic efficiencies of such ratchet heat engines
have been calculated in Refs. �27–29�. It has been argued
that heat engines should generally be characterized by their

performance at maximum power output �30,31�. Recent stud-
ies on ratchet heat engines have varied the load force for a
constant potential in order to maximize the power output
�32,33�. We take a complementary approach and optimize
the potential for a given load. The maximization of power
output and particle current then is equivalent.

So far, this task has been tackled numerically only for a
one-parameter class of potentials for a given temperature
�34�. To the best of our knowledge, there exists no systematic
study on the optimal potential for such a thermal ratchet.
Using variational calculus we determine the optimal poten-
tial which maximizes the current for a given temperature
analytically up to a numerical root search. For a dichotomous
temperature profile with infinitely steep gradients as used in
most previous studies �29,32,33�, the maximal current di-
verges. This unphysical behavior is an effect of the idealized
assumptions of both an infinite temperature gradient at the
interface and the overdamped dynamics. In any realistic sys-
tem, temperature gradients will be finite which is sufficient
to cut off the formal divergence.

II. THE TEMPERATURE RATCHET AND ITS CURRENT

We consider a Brownian particle of mass m moving in a
periodic potential V�x� with V�x+L�=V�x� in a viscous fluid
with friction coefficient �. A constant load f is attached to the
particle. The surrounding temperature is modeled by T�x�
which has the same periodicity L as the potential. A special
case is a piecewise constant temperature with a hot and a
cold area, see Fig. 1. For a properly chosen potential the
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FIG. 1. �Color online� A temperature ratchet: a particle with a
load f moving in a potential V�x� in two piecewise constant tem-
perature regions Th and Tc.
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particle moves against the load on average. The thermal fluc-
tuations in the hot area can push the particle against the load
over the barrier of the potential. As soon as the particle is in
the cold area the probability of getting pushed back is
smaller because of the weaker thermal fluctuations. In this
way the particle drags the load and produces work effec-
tively acting as a heat engine that works between two heat
baths. Such a mechanism is not limited to piecewise constant
temperatures.

The time evolution of the position of the particle x�t� is
governed by the Langevin equation

mẍ = − �ẋ − V��x� + f + g�x���t� , �1�

where time derivatives are denoted by dots and space deriva-
tives by primes. The stochastic term g�x���t� models the ther-
mal noise from the environment. Its strength

g�x� � �kBT�x�� �2�

depends on the temperature profile T�x� resulting in multipli-
cative noise.

In the following we want to make two assumptions: the
friction dominates the inertia and the noise is uncorrelated
Gaussian. When dealing with multiplicative noise, these two
limiting procedures do not commute �35,36�. The order of
the limiting procedures determines the stochastic interpreta-
tion of the term g�x���t�. If we first assume Gaussian white
noise

���t���t��� = 2��t − t�� , �3�

and then go to the overdamped equation

�ẋ = − V��x� + f + g�x���t� , �4�

we end up with a corresponding Fokker-Planck equation

�tp�x,t� = − �x	 1

�
�− V��x� + f� −

1

�2�xg
2�x�
p�x,t� = − �xj�x,t�

�5�

in Ito’s sense where j�x , t� is the current and p�x , t� the prob-
ability distribution.

If we first take the overdamped limit and afterwards as-
sume Gaussian white noise, we end up with a Fokker-Planck
equation in Stratonovich’s sense. Both equations differ in a
drift term which can be absorbed in an effective potential.
Thus, the optimal current does not depend on the interpreta-
tion. The optimal potential is merely shifted by the drift term.
In the following we use the Fokker-Planck equation in Ito’s
sense.

We next introduce dimensionless units. We express ener-
gies in units of kBT0, where

T0 �
1

L
�

0

L

T�x�dx . �6�

By introducing a scaled length x̂�x /L and a scaled time t̂
� t / t0 with t0�L2� /kBT0, we rewrite the Fokker-Planck
equation and identify the dimensionless quantities

T̂�x̂� �
T�x�
T0

, V̂�x̂� �
V�x�
kBT0

, f̂ �
fL

kBT0
,

ĵ�x̂, t̂� �
j�x,t�L2�

kBT0
, p̂�x̂, t̂� � Lp�x,t� . �7�

For ease of notation we drop the hats in the following. The
dimensionless potential V�x� and the dimensionless tempera-
ture profile T�x� are periodic, V�x+1�=V�x�, T�x+1�=T�x�.
In the steady state, the current j is a constant and the Fokker-
Planck equation reduces to

j = �− V��x� + f − T��x��p�x� − T�x��xp�x� . �8�

For a periodic temperature we solve this equation under the
condition of a periodic p�x�. Without loss of generality, we
choose V�0�=0 which results in

p�x� =
je��x�

T�x� � 1

1 − e−��1��
0

1

e−��x��dx� − �
0

x

e−��x��dx�
�9�

with

��x� � �
0

x − V��x�� + f

T�x��
dx�. �10�

Using the normalization �0
1p�x�dx=1, we obtain the inverse

current

j−1 =
1

1 − e−��1��
0

1

e−��x��dx��
0

1 e��x�

T�x�
dx

− �
0

1 ��
0

x

e−��x��dx� e��x�

T�x�
dx �11�

which has been derived previously in Refs. �20,32�.

III. OPTIMIZING THE CURRENT

The inverse current �Eq. �11�� depends on the shape of the
potential V�x�. Instead of optimizing the current directly with
respect to the potential we introduce

B�x� � �
0

x

e−��x��dx� �12�

and rewrite the inverse current in a more elegant way as a
functional of B�x�

j−1�B,B�� = �
0

1 � − B�x�
T�x�B��x�

dx �13�

with

� �
B�1�

1 − B��1�
. �14�

For the minimization of the functional �13�, the function
space is constrained by the periodicity of the potential which
imposes a constraint on B�x�. With the boundary condition
V�1�=V�0�=0 we obtain from Eq. �10� the nonlocal con-
straint
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�
0

1

��Tdx = f �15�

which by using Eq. �12� can be transformed into the isope-
rimetric constraint

�
0

1

T� ln B�dx = �f + T ln B��0
1. �16�

In order to minimize the inverse current �Eq. �13�� under the
constraint �Eq. �16�� we introduce the effective Lagrangian

L�B�x�,B��x�,x� �
� − B�x�

T�x�B��x�
+ �T��x�ln B��x� �17�

with a Lagrange multiplier �.
For a unique solution to the corresponding Euler-

Langrange equation we have to impose two boundary condi-
tions. The first one, B�0�=0, arises naturally from the defi-
nition of B�x� in Eq. �12�. One is tempted to use the
condition B��0�=1 as the second one, but this is not appro-
priate. In principle, we have to allow the derivative to jump
at the boundaries because such jumps do not contribute to
the integral of the Lagrangian. In this way the boundary con-
dition fixes the value B��0�=1, but the value of lim�→0B��0
+ ����, which is the relevant boundary condition for the solu-
tion of the Euler-Langrange equation, in fact, remains a free
parameter. This feature has been discussed in detail for simi-
lar optimization problems �37,38�.

For the optimization we proceed in two steps. First we
minimize the integral of the Lagrangian �0

1Ldx and then we
adjust the remaining parameters to obtain the maximum cur-
rent. The corresponding Euler-Langrange equation is given
by

2B�2T + �� − B��T�B� + 2TB�� + �T2B��T�B� − T�B�� = 0

�18�

with the boundary condition B�0�=0. Changing variables
B�x�=−� exp�I�x��+� leads to a second order differential
equation for I�x� which is integrable. The solution

I	�x� � �
0

x 2dx�

− �TT� 	 �4T�c + �T� + �2T2T�2
�19�

still depends on the Lagrange multiplier � and the new con-
stant c. The solution of the Euler-Lagrange equation

B�x� = − � exp�I	�x�� + � �20�

leads to the optimal inverse current

j−1��,c� = − �
0

1 dx

T�x�I−��x�
=

1

2
�

0

1 	�4� c

T
+ � + �2T�2
dx

�21�

which depends on the two parameters � and c but is inde-
pendent of �. Note that in order to obtain a positive current,
we chose the minus sign of the square root in Eq. �19�.

In the next step, we optimize the inverse current �Eq.
�21�� by adjusting the free parameters � and c. These param-
eters are not independent but related by the constraint �Eq.
�16��

n��,c� � T ln��I−���
0

1

+ f − �
0

1

T� ln�I−��dx + �
0

1

I−�Tdx = 0.

�22�

In the Appendix, we show that in general the optimization
problem has a solution for c=0. Hence, for a given tempera-
ture profile the remaining parameter � can be determined by
the constraint �Eq. �22��. From Eqs. �10�, �12�, and �20� we
derive the optimal potential

V�x� = T ln��I−���
0

x

+ fx − �
0

x

T� ln�I−��dx� + �
0

x

I−�Tdx�

�23�

which becomes the basis for the following case studies.

IV. CASE STUDY I: SINUSOIDAL TEMPERATURE
PROFILE

In this section we will discuss a sinusoidal temperature
profile

T�x� = A sin�2
x� + 1 �24�

with the amplitude 0�A�1. The external force f is a second
parameter. In the following we will study how the optimal
potential and the current depend on these two parameters.

The height of the potential is the essential blocking
mechanism in the ratchet. The thermal “kicks” from the en-
vironment move the particle over this barrier. We expect the
largest slope of the optimal potential roughly at the hottest
point because there the fluctuations are strong enough to
push the particle against a large force. In the colder regions,
the potential should decrease. The optimal potential as deter-
mined numerically using Eq. �23� indeed fulfills these expec-
tations, see Fig. 2�a�.

A. Optimal potential for different amplitudes
of the temperature profile

The optimal potential for different amplitudes A with zero
external force f =0 is shown in Fig. 2�b�. For amplitudes A
→1, the temperature in the colder area x�0.5 goes to zero
and the optimal potential becomes strongly asymmetric. In
this low-temperature area the thermal fluctuations are so
weak that even a gently declining potential is sufficient to
push the particle in one direction. The optimal current is
proportional to the absolute value of the amplitude, see Fig.
2�b�. This general scaling behavior is not limited to a sinu-
soidal temperature profile which can be understood as fol-
lows. With the periodicity T��0�=T��1�, the first term of the
constraint �Eq. �22�� vanishes. With c=0 and f =0, Eqs. �22�
and �21� become
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n��� = �
0

1

T� ln��T� + �4� + �2T�2� −
1

2�
�4� + �2T�2dx = 0

�25�

and

j−1��� =
1

2
�

0

1
�4� + �2T�2dx . �26�

The derivative of the temperature scales as T��x�A. Choos-
ing �A−2, the constraint �Eq. �25�� is independent of A. The
current �Eq. �26�� then is a linear function of A.

Now we consider the system with a finite external force,
f =−0.05. For temperature amplitudes A→1, effectively cor-
responding to a large temperature difference, the external
force can be neglected and the optimal potential looks like in
the case without an external force, see Fig. 2�c�. For small A,
the ratchet effect induced by the temperature difference is not
strong enough against the external force. In this regime, the
optimal potential has to prevent the particle from being
dragged in the direction of the external force. This is
achieved by blocking the particle with a larger barrier, see
Fig. 2�c�.

B. Optimal potential for different external forces

For stronger external forces, the potential has to compen-
sate this dragging mechanism with a larger barrier in order to
obtain a current in the direction opposite to the force. Thus,
we expect larger potentials and smaller currents for stronger
external forces which is confirmed by our calculations, see
Fig. 2�d�.

We next calculate the dimensionless power output of the
heat engine which is given by

P � − f j . �27�

The power output as a function of the force f is shown in the
inset in Fig. 2�d�. It exhibits a maximum at intermediate
forces where the heat engine thus works in a maximum
power regime.

V. CASE STUDY II: PIECEWISE CONSTANT
TEMPERATURE

We now consider a piecewise constant temperature

T�x� = 1 + �T − 2�T��x − 1/2� �28�

with a hot and a cold area with temperatures Th�1+�T and
Tc�1−�T, respectively, where 0��T�1. We then face

-0.5

0

0.5

1

1.5

2

2.5

0 0.25 0.5 0.75 1

0

1

2

V
(x
)

T
(x
)

x

V(x)
T(x)

(a)

-1

0

1

2

3

4

5

6

7

0 0.25 0.5 0.75 1

V
(x
)

x

f=0

A=0.95
A=0.5

A=0.05
A=0.025
A=0.015

0

0.05

0.1

-0.05 0 0.05

j(A)

(b)

0

2

4

6

8

0 0.25 0.5 0.75 1

V
(x
)

x

f=-0.05

A=0.95
A=0.5

A=0.05
A=0.025
A=0.015

0

0.05

0.1

-0.05 0 0.05

j(A)

(c)

-2

-1

0

1

2

3

0 0.25 0.5 0.75 1

V
(x
)

x

f=-0.5
f=-1

f=-1.5
f=-2

0.2

0.4

0.6

0.8

-2 -1.5 -1 -0.5

j(f)
P(f)

(d)

FIG. 2. �Color online� �a� Optimal potential V�x� and T�x�= 1
2 sin�2
x�+1 for load f =−0.05. �b� Optimal potentials V�x� for T�x�

=A sin�2
x�+1 with different amplitudes A and load f =0. Inset: Optimal current j versus A. �c� Optimal potentials V�x� for T�x�
=A sin�2
x�+1 with different amplitudes A and load f =−0.05. Inset: Optimal current j versus A. �d� Optimal potentials V�x� for T�x�
= 1

2 sin�2
x�+1 and for different loads f . Inset: Optimal current j�f� and power P�f� as a function of the force. The power exhibits a
maximum Popt�0.52 at fopt�−1.27.
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discontinuities in the Fokker-Planck equation. In this section,
we first analyze a continuous approximation to the piecewise
constant temperature. The optimal potential then has an com-
plex shape with peaks. We compare these results with a nu-
merical solution for the optimal potential.

The continuous temperature profile

T�x� =
�1 + d sin�2
x�

2�sin2�2
x� + d
+ 1 �29�

interpolates between the extreme values d→0 which corre-
sponds to the piecewise constant temperature �Eq. �28�� with
�T=1 /2 and d→� where the profile becomes sinusoidal
�Eq. �24�� with A=1 /2, see Fig. 3�a�.

The optimal potential for different values of the parameter
d is shown in Fig. 3�b�. For d�1, two peaks emerge in the
optimal potential at the positions of the temperature discon-
tinuities. In between these two peaks, the potential decreases
linearly. The current diverges for d→0, see inset of Fig.
3�b�.

A. Numerical solution for a piecewise constant temperature

We next investigate this complex shape of the potential
and the divergent current in more detail by solving the prob-

lem numerically on a discrete lattice. The goal is to minimize
the inverse current �Eq. �11�� for the piecewise constant tem-
perature �Eq. �28��. The periodic boundary condition �Eq.
�15�� for the potential transforms to the condition

��1� = ��1/2�� 2�T

�T − 1
 +

f

1 − �T
�30�

considering that ��0�=0 by definition �Eq. �10��. For a nu-
merical solution we discretize ��x�→��xi���i with i
=0, . . . ,N and search for a global minimum of j−1��i� in this
�N+1�-dimensional space with a simplex algorithm proposed
by Nelder and Mead �39�. The boundary values �0 and �N
are given according to Eqs. �10� and �30� by

�0 = 0, �31�

�N = �N/2� 2�T

�T − 1
 +

f

1 − �T
�32�

and �1 , . . . ,�N−1 are varied to yield a maximum current. Us-
ing Eq. �10�, we then calculate the potential V�x� from the
optimal ��x�.

The numerical solution for the optimal potential depends
on the discretization which determines how large the gradi-
ent of the temperature and the potential can be, see Fig. 3�c�.
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FIG. 3. �Color online� �a� Continuous approximation T�x� �Eq. �29�� to a piecewise constant temperature for different parameters d. In the
limit d→�, T�x� approaches the sinusoidal profile T�x�= 1

2 sin�2
x�+1. �b� Optimal potentials V�x� for T�x� from �a� with external force
f =−0.05. Inset: current j versus parameter d. �c� Optimal potentials obtained from the numerical minimization on a discrete lattice for a
piecewise constant temperature profile T�x� �Eq. �28�� with �T=1 /2 and with an external force f =−0.05 for different discretization N. �d�
For an external force f =−0.05, optimal current jnum as obtained from the numerics with discretization 2�=1 /N compared to the perturbative
calculation developed in the Appendix.
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For finer discretization, the optimal potential shows larger
gradients. As a consequence, we find that the current jnum�N�
diverges with increasing discretization N→�, see Fig. 3�d�.
This is consistent with the developing divergence visible in
Fig. 3�b�.

B. Origin of the divergent current

Due to the lattice discretization, the temperature profile
can be considered to be linear with gradients with absolute
value 1 / �2��, see Fig. 4. We calculate the optimal inverse
current �Eq. �21�� for such a temperature profile

j−1��,�� = ��2 + 16��2 + ���1 − 4�� . �33�

The Lagrange multiplier � and the discretization parameter �
are related by the corresponding constraint �Eq. �22��

ln�1 +
�

8�2 +
1

4�
� �2

4�2 + 4�� −�1 +
16�2

�
+

4� − 1
��

+ f = 0.

�34�

In the Appendix, we show with a perturbation method that
for �→0, the constraint �Eq. �34�� can be fulfilled if �→0.
For an approximated dependence ����, we use an iterative
method and obtain a sequence of functions

�n+1��� =
1

�ln��n���� − 2 ln�2�� − 1 + f�2 �35�

with �0=1. For the first members we calculate the current
�Eq. �33�� as a function of �. These results are compared to
the numerical current, where the discretization 1 /N corre-
sponds to 2�, see Fig. 3�d�. The divergent behavior of the
current obtained from perturbation theory is in good agree-
ment with the divergence from the numerics. The discrep-
ancy is on one hand due to the numerical integration on the
lattice in Eq. �11� and on the other hand, due to the approxi-
mations implicit in the perturbation method.

More insight into the origin of the divergent current can
be gained from analyzing the probability distribution �Eq.
�9�� which can be calculated from the Fokker-Planck equa-
tion for a model potential. Guided by the optimal potential
obtained from the numerics, see Fig. 3�c�, we consider a
sawtooth potential with a superimposed finite peak at the
temperature discontinuity at x=0.5. Note that we use this

potential only as a case study aiming at a deeper understand-
ing of the divergence of the current. The full optimal poten-
tial has a second peak at x=0 and both the height of the
peaks and the linear slopes between the peaks diverge.

A finite peak potential is not a � function, but can be
considered as a result of a limiting process from a triangular
shape, see Fig. 5. It is important that the peak arises at the
discontinuity of the temperature profile, namely, that the ris-
ing side of the peak is in one temperature area and the other
side is in the other temperature area. Otherwise the peak
would not contribute to the integrals in the current. Since the
peak has infinitesimally small width, the forward rate is not
decreased by a higher peak potential, contrary to a rising
barrier with finite width. A finite peak in a constant tempera-
ture area would not contribute to integrals and thus would
have no effect on mean first passage times. In contrast, for a
dichotomous temperature profile and a finite peak at the in-
terface, mean first passage times involving a crossing of the
peak are affected by its height. The backward mean first
passage time increases exponentially with the peak height. In
contrast and somewhat counter-intuitively, the forward mean
first passage time decreases with increasing peak height due
to the strong suppression of peak recrossings from the cold
side.

A finite peak with height U superimposed on a flat poten-
tial causes a depletion of the particles on the high-
temperature side and an accumulation on the other side. With
increasing peak height U, this behavior saturates, see Fig.
6�a�. In a sawtooth potential, the particles accumulate in
front of the barriers, see Fig. 6�b�. If we combine both effects
by superimposing a finite peak on a sawtooth potential, the
depletion can compensate the accumulation, see Fig. 6�b�.

The compensation of the accumulation is the main reason
for the divergent current. For a sawtooth potential with large
amplitude, the particles would accumulate in front of the
barriers. The peaks counteract this effect and allow the par-
ticles to overcome the barriers. In between the peaks, the
particles �on average� follow the steep potential with large
mean velocity. For finer discretization, the peaks get larger
and the potential in between steeper corresponding to a
stronger force which increases the mean velocity and thus
the current.

This behavior is only valid under the assumption of an
overdamped dynamics where the particle instantaneously ad-
justs its velocity according to the Langevin equation �4�. In
the underdamped case, the particle needs a certain distance to
reach the velocity corresponding to the local force. The over-

0−ε ε 1
2

11 − ε 1 + ε1
2 − ε 1

2 + ε

1

1.5

0.5

FIG. 4. Temperature profile on the lattice with gradients depend-
ing on �.

1/2 1/2

Th TcTh Tc

UU

FIG. 5. �Color online� Peak as a limiting process. Each side is in
one temperature region.
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damped limit is a good approximation as long as the relax-
ation time of the momentum �R�m /� is small compared to
the �mean� time �c it takes for the particle to cross a region
with basically constant force. Considering the potential
above with discretization �, both the peaks and the linear
slopes between the peaks should not become too large for the
overdamped limit to be appropriate. The peaks constitute the
largest slope in the optimal potential and therefore are crucial
for the appropriateness of the overdamped description. Con-
sidering a peak with height U and width 2�L, the relaxation
time �R should be small compared to �c=�L /vs where vs

= �V� /� � =U / ��L�� is the �mean� stationary velocity. There-
fore, the overdamped limit is approriate for

m

�
�

L2�2�

U
or

m

�2L2 �
�2

U
. �36�

For a given value of m / ��2L2�, the discretization � thus can-
not become too small for the overdamped limit to be still
valid. Since the divergence of the current occurs with de-
creasing values of �, the current presumably does not diverge
in any realistic system, where the underlying dynamics is
underdamped. This question, however, is hard to decide con-

clusively, since the current for underdamped dynamics can
only be determined numerically for a given potential. The
optimization of the potential �with an infinite number of de-
grees of freedom� is a computationally difficult task to be
reserved to future work. For a colloidal particle of radius R
�1 �m in a temperature profile with T0�300 K and peri-
odicity L�50 �m, we get

m

�2L2 � 2 � 10−11 1

kBT0
, �37�

where we have used Stokes friction �=6
�R and the mass
m=4
�R3 /3 with viscosity ��10−3 Pa s and density �
�103 kg /m3. Even for the finest discretization ��5�10−4

used in our study, we have �2 /U�3�10−8 /kBT0 and condi-
tion �36� is fulfilled. The overdamped description thus is
valid for the optimal potential for any realistic �finite� tem-
perature gradient. The �large� currents shown in Fig. 3�d�
thus are in principle observable in experiments, provided the
necessary temperature jump can be generated on the scale of
2�L�10−3�50 �m�50 nm. A genuine divergence of the
current, on the other hand, may be prohibited by the onset of
inertia effects.

VI. CONCLUSIONS

Using variational calculus, we have developed a method
to calculate the optimal potential which maximizes the cur-
rent in ratchet heat engines for a continuous temperature pro-
file. In the load free case, we have shown that the maximum
current depends linearly on the amplitude of the temperature
profile.

In the case of a piecewise constant temperature, the cur-
rent diverges for the optimal potential consisting of steep
linear parts and peaks at the boundaries which induce a long-
range effect in the probability distribution. However, the un-
derlying assumption of an overdamped dynamics is limited
by the slopes of the optimal potential presumably resulting in
a bounded current for a particle with finite mass. In addition,
a piecewise constant temperature is an artificial model rather
than physically feasible. For any future nanofluidic or micro-
fluidic realization, the temperature gradients will be finite
and thus the current.

In principle, external potentials for a Brownian particle
can be realized by laser traps. However, it might be very
difficult to model the optimal potential in every detail. In
particular for the dichotomous temperature profile, it is clear
that finite peaks must be approximated by a barrier with a
finite width in any experiment. In order to estimate the ob-
servable velocity, we consider a colloidal particle with radius
R trapped in the optimal potential for a sinusoidal tempera-
ture profile. In recent experiments, temperature gradients
�T /L�105 K /m have been generated �25�. In the load free
case, the optimal dimensionless current is roughly ĵ�2A, see
Fig. 2�b�, where A is the scaled temperature amplitude
�T /T0. With Eq. �7� we get a rough estimate for the station-
ary velocity
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FIG. 6. �Color online� �a� Probability distributions for a rising
peak with height U in a piecewise constant temperature T�x� �Eq.
�28�� with �T=1 /2 and load f =−0.05. �b� Sawtooth potential with
superimposed peak and its corresponding probability distribution in
a piecewise constant temperature T�x� �Eq. �28�� with �T=1 /2 and
load f =−0.05 for different peak heights.
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v �
kB�T

3
�RL
�

100

R/nm

nm

s
, �38�

under the assumption of Stokes friction with viscosity �
�10−3 Pa s. Although such a transport effect is small at a
micrometer scale, future realizations at a nanometer scale
will yield observable velocities.

Our study can be extended in several directions. In prin-
ciple, it would be interesting to calculate the efficiency at
maximum power for our model and compare it to previous
results where only the load force was optimized. However, it
is difficult to define efficiencies for continuous temperature
profiles. Moreover, Hondou and Sekimoto pointed out in
Ref. �40� that heat transfer cannot be treated appropriately
within the overdamped Langevin equation. For a similar
model of a ratchet heat engine, a heuristic argument was
used to propose a potential which leads to a large Peclet
number �41�. It would be interesting to see whether our ap-
proach can be used to calculate the optimal potential with
respect to a maximal Peclet number.

While ratchet heat engines have not been realized experi-
mentally yet, the recent successful generation of large tem-
perature gradients �23–25� may facilitate the construction of
microscopic heat engines. By using our results, such nano-
machines may then be tuned to produce maximum power.
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APPENDIX

1. Optimization of the current with respect to the remaining
free parameters � and c

With I−�x� from Eq. �19�, the inverse current �Eq. �21��
reads

j−1��,c� =
1

2
�

0

1 	�4� c

T
+ � + �2T�2
dx �A1�

with the constraint �Eq. �22�� for � and c

n��,c� = �
0

1

T� ln��T� +�4� c

T
+ � + �2T�2�dx

+ �
0

1 − 2dx

�T� +�4� c

T
+ � + �2T�2

+ f = 0.

�A2�

Note that the first term in Eq. �22� vanishes for T��0�
=T��1� and T�0�=T�1�. By introducing

k��,c,�� � j−1��,c� − �n��,c� �A3�

with Lagrange multiplier � we formulate a minimization
problem under a constraint. For the optimal parameters
c ,� ,� which minimize the optimal inverse current �Eq.

�A1�� and fulfill the constraint �Eq. �A2��, �k
�c , �k

�� and n�� ,c�
have to vanish. These equations cannot be solved analyti-
cally. Nevertheless for c=0 we have

� �k

�c
�

c=0
= �� − ���

0

1 dx

�T�x��4� + �2T�2�x�
�A4�

which vanishes for �=�. The partial derivative

� �k

��
�

�=�,c=0
= −

1

2
�

0

1

T��x�dx �A5�

also vanishes for a periodic temperature profile. Thereby, we
reduce the problem to a one-dimensional root search of
�n�� ,c��c=0 which can easily be done numerically.

Thus, we find one solution but we cannot exclude rigor-
ously that there exist other solutions for this minimization
problem. In our case studies, we find �by a comparison to
numerical optimization� that the solution with c=0 indeed is
a global minimum. This strongly suggests that it generally is
the relevant solution.

2. Perturbation theory for the divergent current

We approximate the dependence ���� for a temperature
profile as shown in Fig. 4 in the limit �→0. The constraint
�Eq. �22��

ln�1 +
�

8�2 +
1

4�
� �2

4�2 + 4�� −�1 +
16�2

�
+

4� − 1
��

+ f = 0

�A6�

relates � with �. We define h��� by

���� � 4�2h��� �A7�

and from Eq. �A6� follows

�hln�1 +
h

2
+

1

2
�h2 + 4h� − �h + 4 + 2 + f�h =

1

2�
.

�A8�

For �→0, the right-hand side of Eq. �A8� diverges and thus
the left-hand side must also diverge, yielding h→�. We con-
sider the leading terms in Eq. �A8�

�h�ln�h� − 1 + f� =
1

2�
�A9�

and rewrite it in a self-consistent equation

h =
1

4�2�ln�h� − 1 + f�2 . �A10�

We use Eq. �A7� to obtain the corresponding

���� =
1

�ln�����
4�2 � − 1 + f2 . �A11�
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In perturbation theory, iteration is a standard method for al-
gebraic equations �42�. In this way we search for a fixed
point which is a solution for the equation. We iterate Eq.
�A11�

�n+1��� =
1

�ln��n���� − 2 ln�2�� − 1 + f�2 �A12�

and choose

�0 = 1 �A13�

for a good convergence. More iterations lead to

�1��� =
1

�2 ln�2�� + 1 − f�2 , �A14�

�2��� =
1

�2 ln�2 ln�2�� + 1 − f � + 2 ln�2�� + 1 − f�2 ,

�A15�

and so on. Note that this sequence converges slowly but still
gives an idea how ���� behaves. For each � we obtain a
current from Eq. �33�. The convergence of this sequence of
currents is shown in Fig. 3�d�.
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